Первая космическая скорость и первый спутник Земли

Мысленный эксперимент Гора Ньютона

Для ответа, почему космическая станция не падает на Землю, представим себе высокую гору, на вершине которой стоит пушка, которая может запускать снаряды с различной скоростью по направлению касательной к Земному шару (сопротивлением воздуха пренебрежем).

Чем больше будет скорость вылета снаряда, тем дальше от подножья горы он будет падать. При некоторой скорости место падения снаряда будет уже так далеко от пушки, что потребуется учитывать кривизну Земли. Траектория полета будет длиннее не только за счет увеличения горизонтальной скорости, но и за счет того, что Земля начнет «уходить» из-под нее.

Если представить себе Землю в виде шара, на вершине которого находится гора с пушкой, то при достаточно высокой скорости он упадет Землю «сбоку». А при еще большей скорости – «снизу». Наконец, при еще более высокой скорости он совершит полный круг и попадет в пушку с другой стороны. Если к тому времени убрать пушку – то он продолжит полет вокруг Земли по круговой траектории.

Рис. 1. Гора и пушка Ньютона траектория.
Рис. 1. Гора и пушка Ньютона траектория.

Заметим, что импульс скорости для снаряда требуется только один раз – при запуске. В дальнейшем снаряд будет постоянно двигаться по круговой траектории вокруг Земли. Земля постоянно будет притягивать снаряд, сообщая ему центростремительное ускорение, и снаряд постоянно будет падать на Землю, но за счет кривизны Земли – никогда не упадет.

Такой мысленный эксперимент впервые был проделан И. Ньютоном, поэтому он называется «Гора Ньютона».

Видео

Первый закон Кеплера

Каждая планета солнечной системы вращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Солнце находится в одном из фокусов эллипса. Ближайшая к Солнцу точка B траектории называется перигелием, а точка A, наиболее удаленная от Солнца — афелием.

Первый закон Кеплера достаточно простой, но важный, так как в свое время он сильно продвинул астрономию. До этого открытия астрономы считали, что планеты движутся исключительно по круговым орбитам. Если же наблюдения противоречили этому убеждению, ученые дополняли главное круговое движение малыми кругами, которые планеты описывали вокруг точек основной круговой орбиты. Кеплер получил доступ к огромной базе наблюдений Тихо Браге и, изучив их, перешагнул старые идеи.

Вторая космическая скорость

Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.

Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:

  • для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
  • для Солнца вторая космическая скорость составляет 617,7 км/с.
  • для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Формула

Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .

Третья космическая скорость

Третья космическая скорость — минимальная скорость, которую необходимо придать находящемуся вблизи поверхности Земли телу, чтобы оно могло преодолеть притяжение не только Земли, но и Солнца, и покинуть пределы Солнечной системы.

Чтобы преодолеть притяжение Солнца, находясь на орбите Земли, нужно развить скорость в \(\sqrt{2}\) раз больше, чем скорость Земли. То есть в направлении движения Земли тело нужно запускать со скоростью \( (\sqrt{2} — 1) · 30\:км/с ≈ 12\:км/с\). Чтобы преодолеть притяжение Земли, нужна скорость \(\sqrt{2} · 7{,}9\:км/с ≈ 11\:км/с\). Преодолеть и то, и другое можно со скоростью \( ≈ 16{,}6\:км/с\). В действительности хватит и меньшей скорости, если запустить космический аппарат так, чтобы его ускоряли другие планеты1.

Постреляем

Высадимся на идеально шарообразную планету без атмосферы. Поставим там пушку с горизонтальным стволом и будем из неё стрелять, постепенно увеличивая заряд.

Сначала снаряд будет падать на поверхность планеты совсем близко (А), потом дальность полёта увеличится (В) и, наконец, снаряд совершит полный оборот, продолжая лететь на постоянной высоте (С). Скорость полёта в этом случае и есть первая космическая.

Продолжим увеличивать скорость снаряда. Траектория вытягивается, превращаясь в эллипс (D), а с какого-то значения скорости «разрывается» (Е), и снаряд улетает в бесконечность. Скорость полёта в этом случае и есть вторая космическая.

Первая и вторая космические скорости

Законы Кеплера применимы не только к движению планет и других небесных тел в Солнечной системе, но и к движению искусственных спутников Земли и космических кораблей. В этом случае центром тяготения является Земля.

В серии книг Дугласа Адамса «‎Автостопом по Галактике»‎ говорится, что летать — это просто промахиваться мимо Земли. Если ты промахнулся мимо Земли и достиг первой космической скорости 7,9 км/с, то ты стал искусственным спутником нашей планеты.

Искусственный спутник Земли — космический летательный аппарат, который вращается вокруг Земли по геоцентрической орбите. Чтобы у него это получалось, аппарат должен иметь начальную скорость, которая равна или больше первой космической.

Первая космическая скорость

v1 — первая космическая скорость [м/с]

g — ускорение свободного падения на данной планете [м/с2]

R — радиус планеты [м]

На планете Земля g ≈ 10 м/с2.

Есть еще вторая и третья космические скорости. Вторая космическая скорость — это скорость, которая нужна, чтобы корабль стал искусственным спутником Солнца, а третья — чтобы вылетел за пределы солнечной системы.

Вторая космическая скорость

v2 — вторая космическая скорость [м/с]

g — ускорение свободного падения на данной планете [м/с2]

R — радиус планеты [м]

На планете Земля g ≈ 10 м/с2.

Теги

Adblock
detector