Помогите может ли остаток быть равен делителю

Деление с остатком

Рассмотрим простой пример: 15:5=3 В этом примере натуральное число 15 мы поделили нацело на 3, без остатка.

Иногда натуральное число полностью поделить нельзя нацело. Например, рассмотрим задачу: В шкафу лежало 16 игрушек. В группе было пятеро детей. Каждый ребенок взял одинаковое количество игрушек. Сколько игрушек у каждого ребенка?

Решение: Поделим число 16 на 5 столбиком получим:


Мы знаем, что 16 на 5 не делиться. Ближайшее меньшее число, которое делиться на 5 это 15 и 1 в остатке. Число 15 мы можем расписать как 5⋅3. В итоге (16 – делимое, 5 – делитель, 3 – неполное частное, 1 — остаток). Получили формулу деления с остатком, по которой можно сделать проверку решения.

16=5⋅3+1

a=bc+d a – делимое, b – делитель, c – неполное частное, d – остаток.

Ответ: каждый ребенок возьмет по 3 игрушки и одна игрушка останется.

Видео

Деление с остатком целых отрицательных чисел

Сформулируем правило деления с остатком целых отрицательных чисел:

Для получения неполного частного с от деления целого отрицательного числа a на целое отрицательное b, нужно произвести вычисления по модулю, после чего прибавить 1. Тогда можно произвести вычисления по формуле:

d = a − b * c

Из правила следует, что неполное частное от деления целых отрицательных чисел — положительное число.

Алгоритм деления с остатком целых отрицательных чисел:

  • найти модули делимого и делителя;
  • разделить модуль делимого на модуль делителя;
  • получить неполное частное и остаток;
  • прибавить 1 к неполному частному;
  • вычислить остаток, исходя из формулы d = a − b * c.

Пример

Найти неполное частное и остаток при делении −17 на −5.

Как решаем:

Применим алгоритм для деления с остатком.

Разделим числа по модулю. Получим, что неполное частное равно 3, а остаток равен 2.

Сложим неполное частное и 1: 3 + 1 = 4. Из этого следует, что неполное частное от деления заданных чисел равно 4.

Для вычисления остатка применим формулу. По условию a = −17, b = −5, c = 4, тогда получим d = a − b * c = −17 − (−5) * 4 = −17 − (−20) = −17 + 20 = 3.

Получилось, что остаток равен 3, а неполное частное равно 4.

Ответ: (−17) : (−5) = 4 (остаток 3).

Связь между делимым, делителем, неполным частным и остатком

При помощи равенства a=b·c+d можно находить неизвестное делимое a, когда известен делитель b  с неполным частным c и остатком d.

Пример 1

Определить делимое, если при деление получим -21, неполное частное 5 и остаток 12. Решение Необходимо вычислить делимое a при известном делителе b=−21, неполным частным с=5 и остатком d=12. Нужно обратиться к равенству a=b·c+d, отсюда получим a=(−21)·5+12. При соблюдении порядка выполнения действий умножим -21 на 5, после этого получаем (−21)·5+12=−105+12=−93. Ответ: -93.

Связь между делителем и неполным частным и остатком можно выразить при помощи равенств: b=(ad):cc=(ad):b и  d=ab·c. С их помощью мы можем вычислить делитель, неполное частное и остаток. Это сводится к постоянному нахождению остатка от деления целого целых чисел a на b с известным делимым, делителем и неполным частным. Применяется формула d=ab·c. Рассмотрим решение подробно.

Пример 2

Найти остаток от деления целого числа -19 на целое 3 при известном неполном частном равном -7. Решение Чтобы вычислить остаток от деления, применим формулу вида d=a−b·c. По условию имеются все данные a=−19, b=3, c=−7.  Отсюда получим d=a−b·c=−19−3·(−7)=−19−(−21)=−19+21=2 (разность −19−(−21). Данный пример вычислен по правилу вычитания целого отрицательного числа. Ответ: 2.

Теорема о делимости целых чисел с остатком

Если нам известно, что а — это делимое, тогда b — это делитель, с — неполное частное, d — остаток. И они между собой связаны. Эту связь можно описать через теорему о делимости с остатком и показать при помощи равенства.

Теорема

Любое целое число может быть представлено только через целое и отличное от нуля число b таким образом:

a = b * q + r,

где q и r — это некоторые целые числа. При этом 0 ≤ r ≤ b.

Докажем возможность существования a = b * q + r .

Доказательство:

Если существуют два числа a и b, причем a делится на b без остатка, тогда из определения следует, что есть число q, и будет верно равенство a = b * q. Тогда равенство можно считать верным: a = b * q + r при r = 0.

Если посчитать, что b — целое положительное число, тогда, следует выбрать целое q так, чтобы произведение b * q не было больше значения числа а , а произведение b * (q + 1) было больше, чем a.

Тогда необходимо взять q такое, чтобы данное неравенством b * q < a < b * (q + 1) было верным. Необходимо вычесть b * q из всех частей выражения. Тогда придем к неравенству такого вида: 0 < a − b * q < b.

Имеем, что значение выражения a − b * q больше нуля и не больше значения числа b, отсюда следует, что r = a − b * q. Получим, что число а можем представить в виде a = b * q + r.

Теперь необходимо рассмотреть возможность представления a = b * q + r для отрицательных значений b.

Модуль числа получается положительным, тогда получим a = b * q1 + r, где значение q1 — некоторое целое число, r — целое число, которое подходит условию 0 ≤ r < b. Принимаем q = −q1, получим, что a = b * q + r для отрицательных b.

Теги

Adblock
detector