Золотая спираль Фибоначчи

Что такое золотое сечение

Это соотношение двух неравных чисел, при котором большее так же относится к меньшему, как сумма этих чисел к большему. Золотое сечение равно примерно 1,618, или 1,62, если округлить, и обозначается греческой буквой φ, «фи» — от имени древнегреческого скульптора Фидия. Считается, что он использовал такие пропорции при оформлении Парфенона.

Наиболее известные графические представления золотого сечения — это прямоугольник с соотношением сторон примерно 62:48 и построенная в нём спираль.

«Золотой прямоугольник» можно разделить на такие же, только меньшего размера. Изображение: Dicklyon / Wikimedia Commons «Золотая спираль» (красная), вписанная в «золотой прямоугольник». Изображение: Silverhammermba & Jahobr / Wikimedia Commons

Золотое сечение тесно связано с числами Фибоначчи. Это ряд чисел, каждое из которых равняется сумме двух предыдущих: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 и так далее. Чем дальше продолжается этот ряд, тем ближе соотношение соседних чисел в нём к 1,618. Например, 3/2=1,5; 8/5=1,6, а 34/21= 1,619.

Видео

Популярность сквозь века

Первое упоминание принципа золотого сечения появилось еще во времена Пифагора. С тех пор ученые всегда наблюдали за этой пропорцией, изучали ее и строили разного рода догадки и предположения.

В современном мире это явление получило широкую огласку после выхода на экран фильма «Код да Винчи». В этой картине создатели фильма обратили внимание широкой аудитории на то, что золотое сечение используется и встречается повсюду. Там было упомянуто, что пропорция соблюдается везде, даже в человеческом теле. И естественно, множество людей тут же заинтересовалось этой темой. Интерес к золотому сечению, возникший благодаря этому фильму, не стихает до сих пор. Интернет заполнило огромное количество «живых» спиралей Фибоначчи на фото: волны, циклоны, растения, моллюски… Все эти снимки раз за разом показывают красоту одного из самых главных законов природы.

Золотое сечение в психологии

Числа Фибоначчи и Золотое сечение чтобы также используется и в психологии. Например, чтобы выяснить, как развивается механизм творчества, В.В. Клименко воспользовался математикой, а именно законами чисел Фибоначчи и пропорцией «золотого сечения» — законами природы и жизни человека. Если развернуть в ряд числа Фибоначчи, то получим: 1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89 и т.д. Отношение между числами Фибоначчи составляет 0,618. Развитие человека также происходит соответственно данной пропорции и подчиняется закону ее чисел, разделяя нашу жизнь на этапы с теми или иными доминантами механизма творчества [7].

Числа Фибоначчи делят нашу жизнь на этапы по количеству прожитых лет:

• 0 —начало отсчета — ребёнок родился. У него еще отсутствуют не только психомоторика, мышление, чувства, воображение, но и оперативный энергопотенциал. Он — начало новой жизни, новой гармонии;

• 1 — ребенок овладел ходьбой и осваивает ближайшее окружение;

• 2 — понимает речь и действует, пользуясь словесными указаниями;

• 3 — действует посредством слова, задаёт вопросы;

• 5 — «возраст грации» — гармония психомоторики, памяти, воображения и чувств, которые уже позволяют ребёнку охватить мир во всей его целостности;

• 8 — на передний план выходят чувства. Им служит воображение, а мышление силами своей критичности направлено на поддержку внутренней и внешней гармонии…

Ряд Фибоначчи и золотое сечение

Продолжаем творить и наблюдать за магией математики и золотого сечения. В средние века был такой товарищ — Фибоначчи (или Фибоначи, везде по-разному пишут). Любил математику и задачи, была у него и интересная задачка с размножением кроликов =) Но не в этом суть. Он открыл числовую последовательность, числа в ней так и зовутся «числа Фибоначчи».

Сама последовательность выглядит так:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233… и дальше до бесконечности.

Если словами, то последовательность Фибоначчи — это такая последовательность чисел, где каждое последующее число, равно сумме двух предыдущих.Причем здесь золотое сечение? Сейчас увидите.

Причем здесь золотое сечение? Сейчас увидите.

Спираль Фибоначчи

Чтобы увидеть и прочувствовать всю связь числового ряда Фибоначчи и золотого сечения, нужно снова взглянуть на формулы.

Золотая спираль, формулы (развернуть)

Иными словами, с 9-го члена последовательности Фибоначчи мы начинаем получать значения золотого сечения. И если визуализировать всю эту картину, то мы увидим, как последовательность Фибоначчи создает прямоугольники все ближе и ближе к золотому прямоугольнику. Вот такая вот связь.

Теперь поговорим о спирали Фибоначчи, ее еще называют «золотой спиралью».

Золотая спираль — логарифмическая спираль, коэффицЗолотая спираль — логарифмическая спираль, коэффициент роста которой равен φ4, где φ — золотое сечение.В общем и целом, с точки зрения математики, золото

В общем и целом, с точки зрения математики, золотое сечение — идеальная пропорция. Но на этом ее чудеса только начинаются. Принципам золотого сечения подчинен почти весь мир, эту пропорцию создала сама природа. Даже эзотерики, и те, видят в ней числовую мощь. Но об этом точно не в этой статье будем говорить, поэтому, чтобы ничего не пропустить, можете подписаться на обновления сайта.

Золотые пропорции в строении молекулы ДНК

Все сведения о физиологических особенностях живых существ хранятся в микроскопической молекуле ДНК, строение которой также содержит в себе закон золотой пропорции. Молекула ДНК состоит из двух вертикально переплетенных между собой спиралей. Длина каждой из этих спиралей составляет 34 ангстрема, ширина 21 ангстрема. (1 ангстрем — одна стомиллионная доля сантиметра).

21 и 34 — это цифры, следующие друг за другом в последовательности чисел Фибоначчи, то есть соотношение длины и ширины логарифмической спирали молекулы ДНК несет в себе формулу золотого сечения 1:1,618

Числа Фибоначчи в природе

Подсолнухи являются отличными примерами последовательности Фибоначчи, потому что семена в центре цветка организованы в два набора спиралей — короткие, идущие по часовой стрелке от центра, и более длинные — против часовой стрелки. Если считать спирали последовательно, то, видимо, всегда найдутся числа Фибоначчи.

Последовательность Фибоначчи можно также увидеть в форме или разделении ветвей дерева. Основной ствол будет расти до тех пор, пока он не создаст ветвь, которая создает две точки роста. Затем один из новых стеблей разветвляется на два, в то время как другой находится в состоянии покоя. Такая картина ветвления повторяется для каждого из новых стеблей. Корневая система и даже водоросли также демонстрируют эту закономерность.

Ветви дерева демонстрируют последовательность Фибоначчи.

Вот еще несколько примеров, где вы можете найти спираль Фибоначчи в природе.

Неудивительно, что спиральные галактики также следуют знакомой схеме Фибоначчи. Млечный Путь имеет несколько спиральных рукавов, каждый из которых представляет логарифмическую спираль около 12 градусов.

Спираль Фибоначчи и технический анализ

И на самом деле, данная идея, с применением последовательного числового ряда Фибоначчи и его золотая пропорция, нашла широкое распространение в сфере трейдинга. В частности, в основе графических инструментов, которые пользуются, довольно огромной популярностью, среди торговцев, работающих по техническому анализу. Об этом знает практически каждый современный (и не только) трейдер.

Но нас с вами, первостепенно интересует, непосредственно «спираль Фибоначчи», как один из самых редко используемых и, в тоже время, один из самых «загадочных», графических инструментов. Потому что, как обсуждалось выше, для его построения и применения на колебаниях цен, нет чётких, «стандартно-классических» критериев. То есть, по спирали Фибо, каждый «технарь», торгует, как бы, «кто во что горазд».   Поэтому, давайте мы с вами не будем сейчас углубляться в «дебри», а перейдём, непосредственно к рассмотрению, как строить, анализировать и принимать торговые решения по данной спирали.

Пояснение о золотом сечении

Золотое сечение – деление целого (например, отрезка) на такие части, которые соотносятся по следующему принципу: большая часть относится к меньшей так же, как и вся величина (например, сумма двух отрезков) к большей части.

Первое упоминание о золотом сечении можно встретить у Евклида в его трактате «Начала» (примерно 300 лет до н.э.). В контексте построения правильного прямоугольника.

Привычный нам термин в 1835 году ввел в оборот немецкий математик Мартин Ом.

Если описывать золотое сечение приблизительно, оно представляет собой пропорциональное деление на две неравных части: примерно 62% и 38%. В числовом выражении золотое сечение представляет собой число 1,6180339887.

Золотое сечение находит практическое применение в изобразительном искусстве (картины Леонардо да Винчи и других живописцев Ренессанса), архитектуре, кинематографе («Броненосец «Потемкин» С. Эзенштейна) и других областях. Долгое время считалось, что золотое сечение – наиболее эстетичная пропорция. Такое мнение популярно и сегодня. Хотя по результатам исследований визуально большинство людей не воспринимают такую пропорцию наиболее удачным вариантом и считают слишком вытянутой (непропорциональной).

 Длина отрезка с = 1, а = 0,618, b = 0,382. Отноше

  • Длина отрезка с = 1, а = 0,618, b = 0,382.
  • Отношение с к а = 1, 618.
  • Отношение с к b = 2,618

А теперь вернемся к числам Фибоначчи. Возьмем два следующих друг за другом члена из его последовательности. Разделим большее число на меньшее и получим приблизительно 1,618. А теперь задействуем то же большее число и следующий за ним член ряда (т.е. еще большее число) – их отношение рано 0,618.

Вот пример: 144, 233, 377.

233/144 = 1,618 и 233/377 = 0,618

Кстати, если вы попробуете проделать тот же эксперимент с числами из начала последовательности (например, 2, 3, 5), ничего не получится. Ну, почти. Правило золотого сечения почти не соблюдается для начала последовательности. Но зато по мере продвижения вдоль ряда и возрастания чисел работает отлично.

И для того, чтобы вычислить весь ряд чисел Фибоначчи, достаточно знать три члена последовательности, идущих друг за другом. Можете убедиться в этом сами!

Как построить спираль Фибоначчи

Как уже говорилось ранее, Fibo-числа широко используются в трейдинге на Форекс. Однако по поводу Спирали Фибоначчи по-прежнему остается много вопросов. Например, у трейдеров пока еще нет четкой определенности относительно правил выделения на графике ценовых экстремумов, необходимых для начала построения Спирали. Как следствие, различные стратегии Форекс, использующие этот метод Фибоначчи в трейдинге, решают данную проблему по-разному – иногда предлагаются и противоречащие друг другу подходы. Между тем, все они убедительно доказывают свое право на существование, так как единое мнение по этой проблематике пока еще не выработано.

Золотой прямоугольник

Идеальный, с точки зрения спирали Фибоначчи, прямоугольник имеет стороны, длина которых пропорциональна друг к другу именно по коэффициенту фи. Иными словами, при делении одной стороны на другую обязательно должно получиться 1,618 либо 0,618 (число, обратное коэффициенту фи).

Такие прямоугольники довольно распространены в архитектуре и композиции. Интересно также то,что именно их большинство людей считают «идеальными» или «правильными» с визуальной точки зрения. Иными словами, человек интуитивно воспринимает эти пропорции более красивыми и естественными, приятным глазу. Даже если дело касается геометрических фигур.

Строение золотого ортогонального четырехугольника и спирали

Золотое сечение — это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему.

В геометрии прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Его длинные стороны соотносятся с короткими сторонами в соотношении 1,168 : 1.

Золотой прямоугольник также обладает многими удивительными свойствами. Золотой прямоугольник обладает многими необычными свойствами. Отрезав от золотого прямоугольника квадрат, сторона которого равна меньшей стороне прямоугольника, мы снова получим золотой прямоугольник меньших размеров. Этот процесс можно продолжать до бесконечности. Продолжая отрезать квадраты, мы будем получать все меньшие и меньшие золотые прямоугольники. Причем располагаться они будут по логарифмической спирали, имеющей важное значение в математических моделях природных объектов (например, раковинах улиток).

Полюс спирали лежит на пересечении диагоналей начального прямоугольника и первого отрезаемого вертикального. Причем, диагонали всех последующих уменьшающихся золотых прямоугольников лежат на этих диагоналях. Разумеется, есть и золотой треугольник.

Английский дизайнер и эстетик Уильям Чарлтон констатировал, что люди считают спиралевидные формы приятными на вид и используют их вот уже тысячелетия, объяснив это так:

«Нам приятен вид спирали, потому что визуально мы с легкостью можем рассматривать ее.»

История происхождения чисел Фибоначчи и Золотого сечения

Леонардо был рожден в Пизе. Впоследствии получил прозвище Фибоначчи, что означает «хорошо рожденный сын». Когда Леонардо жил со своим отцом в странах Северной Африки, он изучал математику с арабскими учителями. Получив весь необходимый материал, он создал собственную книгу – «Книгу абака». Именно этот человек становится первым средневековым учёным, познакомившим Европу с арабской системой счисления, которой мы пользуемся всю нашу жизнь[1].

Рисунок 1. Задача о кроликах (Павел Малахов, 2017)

Из этой задачи и можно вывести саму последовательность чисел Фибоначчи: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,… В основе этой последовательности лежит алгоритм: начиная с «1, 1» следующим числом будет сумма двух предыдущих чисел. Разделив любой член данной последовательности на член, который стоит перед ним, мы получим величину, называемую «пропорцией Золотого сечения» — примерно 1, 618[3].

«Шкурка выделки не сто́ит»

Почему этому несовершенству данных инструментов уделяется столь огромное внимание? Да потому что именно от истинно-верных расположений ориентиров индикатора зависит, положительное будет выбранное нами последующее направление движения, при выставлении позиции, или отрицательное! И, к сожалению, данный «изъян», невозможно обойти никакими способами (если разработчики индикаторов не смогли адаптировать его под искажение масштаба отображения рабочего графика, то нам и подавно, с этим не справиться)!

Друзья, даже если предположить, что мы всё-таки ухитрились «привязать» масштаб структуры индикатора к изменению зума отображаемого графика, к примеру, фиксацией графика «пунктов на бар», то при переключении таймфрейма, или переносе графика на монитор с отличным соотношением сторон (разрешение экрана), мы в итоге, всё равно, получим искажённую картинку. А отсюда, и неверный анализ динамики цен, и, как следствие, не правильно принятое торговое решение. Прибавьте к этому, в прямом смысле, неуверенность интерпретаций инструмента, и мы получаем то, что называется «шкурка выделки не сто́ит».

Заключение

Выше сказанный контекст, является субъективным мнением, поэтому, вас никто и никогда не вправе заставлять анализировать и торговать по данной интерпретации и графическому инструменту. Мы лишь привели неоспоримые факты, как уникальности данного индикатора, так и его существенный недостаток. А применять его в своей торговой стратегии или нет – решать лично вам, как, несомненно, Профессионалам с большой буквы, в недалёком будущем!

Теги

Adblock
detector